Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/178264
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez Madrid, Agustín-
dc.contributor.authorRubí Capaceti, José Miguel-
dc.contributor.authorLapas, Luciano Calheiros-
dc.date.accessioned2021-06-11T08:55:49Z-
dc.date.available2021-06-11T08:55:49Z-
dc.date.issued2011-01-
dc.identifier.urihttp://hdl.handle.net/2445/178264-
dc.description.abstractSystems in conditions of equilibrium strictly follow the rules of thermodynamics (Callen, 1985). In such cases, despite the intricate behaviour of large numbers of molecules, the system can be completely characterized by a few variables that describe global average properties. The extension of thermodynamics to non-equilibrium situations entails the revision of basic concepts such as entropy and its related thermodynamic potentials as well as temperature that are strictly defined in equilibrium. Non-equilibrium thermodynamics proposes such an extension (de Groot & Mazur, 1984) for systems that are in local equilibrium. Despite its generality, this theory is applicable only to situations in which the system manifests a deterministic behaviour where fluctuations play no role. Moreover, nonequilibrium thermodynamics is formulated in the linear response domain in which the fluxes of the conserved local quantities (mass, energy, momentum, etc.) are proportional to the thermodynamic forces (gradients of density, temperature, velocity, etc.). While the linear approximation is valid for many transport processes, such as heat conduction and mass diffusion, even in the presence of large gradients, it is not appropriate for activated processes such as chemical and biochemical reactions in which the system immediately enters the non-linear domain or for small systems in which fluctuations may be relevant...ca
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherIntechOpenca
dc.relation.isformatofReprodució del document publicat a: http://doi.org/10.5772/13138-
dc.relation.ispartofChapter 10 in: Tadashi, Mizutani. 2011. Thermodynamics. IntechOpen. ISBN: 978-953-307-544-0. DOI: 10.5772/558. pp: 195-204.-
dc.relation.urihttp://doi.org/10.5772/13138-
dc.rightscc by (c) Pérez Madrid, Agustín et al., 2011-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.sourceLlibres / Capítols de llibre (Física de la Matèria Condensada)-
dc.subject.classificationTermodinàmica del desequilibricat
dc.subject.classificationNanoestructurescat
dc.subject.otherNonequilibrium thermodynamicseng
dc.subject.otherNanostructureseng
dc.titleMesoscopic Non-Equilibrium Thermodynamics: Application to Radiative Heat Exchange in Nanostructuresca
dc.typeinfo:eu-repo/semantics/bookPartca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec249918-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Llibres / Capítols de llibre (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
249918.pdf385.24 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons