Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/178913
Title: | A Semi-deterministic random walk with resetting |
Author: | Villarroel, Javier Montero Torralbo, Miquel Vega, Juan Antonio |
Keywords: | Rutes aleatòries (Matemàtica) Distribució (Teoria de la probabilitat) Random walks (Mathematics) Distribution (Probability theory) |
Issue Date: | 28-Jun-2021 |
Publisher: | MDPI |
Abstract: | We consider a discrete-time random walk $(x_t)$ which at random times is reset to the starting position and performs a deterministic motion between them. We show that the quantity $\Pr \Big( x_{ t+1}= n+1 |x_{t}=n \Big), n\to \infty$ determines if the system is averse, neutral or inclined towards resetting. It also classifica the stationary distribution. Double barrier probabilities, first passage times and the distribution of the escape time from intervals are determined. |
Note: | Reproducció del document publicat a: https://doi.org/10.3390/e23070825 |
It is part of: | Entropy, 2021, vol. 23, num. 7, p. 825-1-825-13 |
URI: | https://hdl.handle.net/2445/178913 |
Related resource: | https://doi.org/10.3390/e23070825 |
ISSN: | 1099-4300 |
Appears in Collections: | Articles publicats en revistes (Física de la Matèria Condensada) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
713032.pdf | 327.53 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License