Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRíos Huguet, Arnau-
dc.contributor.authorRozalén Sarmiento, Javier-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutor: Arnau Rios Huguetca
dc.description.abstractThe Schrödinger equation is known to be a great tool for understanding small physical systems, yet an analytical solution exists solely for some simple cases. As a consequence of this, a wide variety of numerical methods are used to solve real systems, and machine learning methods, namely Artificial Neural Networks (ANNs), are amidst the newest. In this work we use an ANN to find the ground state wave function of the deuteron -this is, the nuclear two-body bound state-, achieving energy values that are within 0.05% of the exact results and wave functions that overlap up to 99.9997% with the exact ones. We also compare the performance of a single-layer ANN against a two-layer ANN, the latter not showing significant improvements over the formerca
dc.format.extent5 p.-
dc.rightscc-by-nc-nd (c) Rozalén, 2021-
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationEquació de Schrödingercat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherMachine learningeng
dc.subject.otherSchrödinger equationeng
dc.subject.otherBachelor's theseseng
dc.titleSolving the Schrödinger equation with machine learningeng
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
ROZALÉN SARMIENTO JAVIER_4253611_assignsubmission_file_TFG-Rozalén-Sarmiento-Javier.pdf394.57 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons