Please use this identifier to cite or link to this item:
Title: Machine learning for iron oxide identification from oxygen K edge in EELS spectra
Author: Roset Tomàs, Marc
Director/Tutor: Estradé Albiol, Sònia
Pozo Bueno, Daniel del
Keywords: Aprenentatge automàtic
Espectroscòpia de pèrdua d'energia d'electrons
Treballs de fi de grau
Machine learning
Electron energy loss spectroscopy
Bachelor's theses
Issue Date: Jul-2021
Abstract: In this work we test machine learning tools such as the Support Vector Machine algorithm and neural network models on the task of Electron Energy-Loss Spectroscopy (EELS) spectra classification. Given many sample spectra of EELS applied on wüstite and magnetite nanocubes, we train both models to determine the oxidation state of iron. We show that SMV exhibits a good performance on classifying clean data, and we demonstrate the capability of neural networks of producing robust results given shifted data
Note: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutors: Sònia Estradé, Daniel Del Pozo Bueno
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
ROSET TOMÀS MARC_4253527_assignsubmission_file_TFG-Roset-Tomas-Marc.pdf327.89 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons