Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/181290| Title: | Adversary detection in neural networks via persistent homology |
| Author: | Da Dalt, Severino |
| Director/Tutor: | Belchí Guillamón, Francisco |
| Keywords: | Homologia Treballs de fi de grau Xarxes neuronals (Informàtica) Aprenentatge automàtic Topologia algebraica Homology Bachelor's theses Neural networks (Computer science) Machine learning Algebraic topology |
| Issue Date: | 24-Jan-2021 |
| Abstract: | [en] The main goal of this work is to present a recently-invented homology theory called persistent homology and its application on the detection of adversary examples of neural network presented in the paper [4]. |
| Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Francisco Belchí Guillamón |
| URI: | https://hdl.handle.net/2445/181290 |
| Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| tfg_da_dalt_severino.pdf | Memòria | 10.92 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
