Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/181532
Title: | From the classical to the stochastic heat equation |
Author: | Petchamé Guerrero, Jordi |
Director/Tutor: | Sanz-Solé, Marta |
Keywords: | Equació de la calor Treballs de fi de grau Equacions en derivades parcials Processos gaussians Anàlisi estocàstica Heat equation Bachelor's theses Partial differential equations Gaussian processes Stochastic analysis |
Issue Date: | 24-Jan-2021 |
Abstract: | [en] This bachelor’s thesis revolves around the connection between stochastic processes and the heat equation. The main goal is to carry out a thorough study of the transition from the classical to the stochastic one-dimensional heat equation. In order to develop the mathematical framework for linear stochastic partial differential equations, we use tools of basic probability theory, calculus and functional analysis. We start with a concise study of the classical deterministic heat equation, from its physical derivation to the search for explicit solutions under specific conditions. Then, we describe the mathematical foundations of the stochastic version of this partial differential equation, focusing on Gaussian stochastic processes. On that basis, we define the stochastic heat equation on $\mathbb{R}$. Finally, we conclude this project with a comprehensive analysis of its solutions’ continuity properties. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Marta Sanz |
URI: | http://hdl.handle.net/2445/181532 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_jordi_petchame_guerrero.pdf | Memòria | 933.41 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License