Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/181532
Title: From the classical to the stochastic heat equation
Author: Petchamé Guerrero, Jordi
Director/Tutor: Sanz-Solé, Marta
Keywords: Equació de la calor
Treballs de fi de grau
Equacions en derivades parcials
Processos gaussians
Anàlisi estocàstica
Heat equation
Bachelor's theses
Partial differential equations
Gaussian processes
Stochastic analysis
Issue Date: 24-Jan-2021
Abstract: [en] This bachelor’s thesis revolves around the connection between stochastic processes and the heat equation. The main goal is to carry out a thorough study of the transition from the classical to the stochastic one-dimensional heat equation. In order to develop the mathematical framework for linear stochastic partial differential equations, we use tools of basic probability theory, calculus and functional analysis. We start with a concise study of the classical deterministic heat equation, from its physical derivation to the search for explicit solutions under specific conditions. Then, we describe the mathematical foundations of the stochastic version of this partial differential equation, focusing on Gaussian stochastic processes. On that basis, we define the stochastic heat equation on $\mathbb{R}$. Finally, we conclude this project with a comprehensive analysis of its solutions’ continuity properties.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Marta Sanz
URI: http://hdl.handle.net/2445/181532
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_jordi_petchame_guerrero.pdfMemòria933.41 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons