Please use this identifier to cite or link to this item:
Title: On the stability of the Lagrangian points in the restricted circular 3-body problem
Author: Romero Marimon, Pablo
Director/Tutor: Jorba i Monte, Àngel
Keywords: Problema dels tres cossos
Treballs de fi de grau
Mecànica celeste
Sistemes hamiltonians
Anàlisi numèrica
Three-body problem
Bachelor's theses
Celestial mechanics
Hamiltonian systems
Numerical analysis
Issue Date: 24-Jan-2021
Abstract: [en] The 3-body problem is one of the most celebrated problems in mathematics. In this work we aim to find the equilibrium points of one of the three masses, which is considered infinitesimal, and study their stability in two different phase spaces. The question of stability is addressed using both analytical and numerical methods. Whereas the Lyapunov and KAM theories provide us with analytical proofs of the stable or unstable behaviour in the first phase space, analytical methods motivated by the Nekhoroshev theory allow us to compute practical bounds of the time until which the infinitesimal mass remains near the equilibria in the second. Finally, these bounds are applied to the case of a well known system: the Sun-Jupiter-Trojan system.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Àngel Jorba i Monte
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_pablo_romero_marimon.pdfMemòria681.72 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons