Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/184095| Title: | Muckenhoupt type weights and Berezin formulas for Bergman spaces |
| Author: | Cascante, Ma. Carme (Maria Carme) Fàbrega Casamitjana, Joan Pascuas Tijero, Daniel |
| Keywords: | Representacions integrals Nuclis de Bergman Operadors de Toeplitz Integral representations Bergman kernel functions Toeplitz operators |
| Issue Date: | Dec-2021 |
| Publisher: | Elsevier |
| Abstract: | By means of Muckenhoupt type conditions, we characterize the weights $\omega$ on $\C$ such that the Bergman projection of $F^{2,\ell}_{\alpha}=H(\C)\cap L^2(\C,e^{-\frac{\alpha}2|z|^{2\ell}})$, $\alpha>0$, $\ell>1$, is bounded on $L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}}\omega(z))$, for $1<p<\infty$. We also obtain explicit representation integral formulas for functions in the weighted Bergman spaces $A^p(\omega)=H(\C)\cap L^p(\omega)$. Finally, we check the validity of the so called Sarason conjecture about the boundedness of products of certain Toeplitz operators on the spaces $F^{p,\ell}_\alpha=H(\C)\cap L^p(\C,e^{-\frac{\alpha p}2|z|^{2\ell}})$. |
| Note: | Reproducció del document publicat a: https://doi.org/10.1016/j.jmaa.2021.125481 |
| It is part of: | Journal of Mathematical Analysis and Applications, 2021, vol. 504, p. 125481 |
| URI: | https://hdl.handle.net/2445/184095 |
| Related resource: | https://doi.org/10.1016/j.jmaa.2021.125481 |
| ISSN: | 0022-247X |
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 713206.pdf | 538.29 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
