Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/184294
Title: AI delivers Michaelis constants as fuel for genome-scale metabolic models
Author: Antolin, Albert A.
Cascante i Serratosa, Marta
Keywords: Cinètica enzimàtica
Intel·ligència artificial
Enzyme kinetics
Artificial intelligence
Issue Date: 20-Oct-2021
Publisher: Public Library of Science (PLoS)
Abstract: Michaelis constants (Km) are essential to predict the catalytic rate of enzymes, but are not widely available. A new study in PLOS Biology uses artificial intelligence (AI) to accurately predict Km on a proteome-wide scale, paving the way for dynamic, genome-wide modeling of metabolism.
Note: Reproducció del document publicat a: https://doi.org/10.1371/journal.pbio.3001415
It is part of: PLoS Biology, 2021, vol. 19, num. 10, p. e3001415
URI: https://hdl.handle.net/2445/184294
Related resource: https://doi.org/10.1371/journal.pbio.3001415
ISSN: 1544-9173
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
717408.pdf612.4 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons