Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184321
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBlanco Fernández, Bárbara-
dc.contributor.authorGarrido, Cristina-
dc.contributor.authorRubí Sans, Gerard-
dc.contributor.authorSánchez Cid, Lourdes-
dc.contributor.authorGuerra Rebollo, Marta-
dc.contributor.authorRubio Vidal, Núria-
dc.contributor.authorMateos Timoneda, Miguel Ángel-
dc.contributor.authorEngel, Elisabeth-
dc.contributor.authorPérez Amodio, Soledad-
dc.date.accessioned2022-03-22T12:01:14Z-
dc.date.available2023-01-13T06:10:24Z-
dc.date.issued2021-02-01-
dc.identifier.issn0928-4931-
dc.identifier.urihttp://hdl.handle.net/2445/184321-
dc.description.abstractThymidine kinase expressing human adipose mesenchymal stem cells (TK-hAMSCs) in combination with ganciclovir (GCV) are an effective platform for antitumor bystander therapy in mice models. However, this strategy requires multiple TK-hAMSCs administrations and a substantial number of cells. Therefore, for clinical translation, it is necessary to find a biocompatible scaffold providing TK-hAMSCs retention in the implantation site against their rapid wash-out. We have developed a microtissue (MT) composed by TKhAMSCs and a scaffold made of polylactic acid microparticles and cell-derived extracellular matrix deposited by hAMSCs. The efficacy of these MTs as vehicles for TK-hAMSCs/GCV bystander therapy was evaluated in a rodent model of human prostate cancer. Subcutaneously implanted MTs were integrated in the surrounding tissue, allowing neovascularization and maintenance of TK-hAMSCs viability. Furthermore, MTs implanted beside tumors allowed TK-hAMSCs migration towards tumor cells and, after GCV administration, inhibited tumor growth. These results indicate that TK-hAMSCs-MTs are promising cell reservoirs for clinical use of therapeutic MSCs in bystander therapies.ca
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherElsevier-
dc.relation.isformatofReproducció del postprint publicat a: https://doi.org/10.1016/j.msec.2020.111854-
dc.relation.ispartofMaterials Science & Engineering C-Materials For Biological Applications, 2021, vol 121-
dc.relation.urihttps://doi.org/10.1016/j.msec.2020.111854-
dc.rightscc by-nc-nd (c) Elsevier, 2021-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationNanomedicina-
dc.subject.classificationCàncer-
dc.subject.otherNanomedicine-
dc.subject.otherCancer-
dc.titleEngineered microtissues for the bystander therapy against cancerca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.date.updated2022-03-11T09:44:39Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/712754/EU//BEST-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6470487-
dc.identifier.pmid33579487-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
2021_MatSciEngC_EngineeredMicro_Engel_Postprint.pdf1.58 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons