Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184809
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVillada-Balbuena, Alejandro-
dc.contributor.authorOrtiz-Ambriz, Antonio-
dc.contributor.authorCastro-Villarreal, Pavel-
dc.contributor.authorTierno, Pietro-
dc.contributor.authorCastañeda-Priego, Ramón-
dc.contributor.authorMéndez-Alcaraz, José Miguel-
dc.date.accessioned2022-04-08T17:17:52Z-
dc.date.available2022-04-08T17:17:52Z-
dc.date.issued2021-11-14-
dc.identifier.issn2643-1564-
dc.identifier.urihttp://hdl.handle.net/2445/184809-
dc.description.abstractIn colloidal systems, Brownian motion emerges from the massive separation of time and length scales associated with characteristic dynamics of the solute and solvent constituents. This separation of scales produces several temporal regimes in the colloidal dynamics when combined with the effects of the interaction between the particles, confinement conditions, and state variables, such as density and temperature. Some examples are the short- and long-time regimes in two- and three-dimensional open systems and the diffusive and subdiffusive regimes observed in the single-file (SF) dynamics along a straight line. In this paper, we address the way in which a confining geometry induces new time scales. We report on the dynamics of interacting colloidal particles moving along a circle by combining a heuristic theoretical analysis of the involved scales, Brownian dynamics computer simulations, and video-microscopy experiments with paramagnetic colloids confined to lithographic circular channels subjected to an external magnetic field. The systems display four temporal regimes in the following order: one-dimensional free diffusion, SF subdiffusion, free-cluster rotational diffusion, and the expected saturation due to the confinement. We also report analytical expressions for the mean-square angular displacement and crossover times obtained from scaling arguments, which accurately reproduce both experiments and simulations. Our generic approach can be used to predict the long-time dynamics of many other confined physical systems.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Physical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevResearch.3.033246-
dc.relation.ispartofPhysical Review Research, 2021, vol. 3, num. 3, p. 033246-
dc.relation.urihttps://doi.org/10.1103/PhysRevResearch.3.033246-
dc.rightscc-by (c) Villada-Balbuena, Alejandro et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationCol·loides-
dc.subject.classificationDifusió-
dc.subject.classificationMicroscòpia-
dc.subject.otherColloids-
dc.subject.otherDiffusion-
dc.subject.otherMicroscopy-
dc.titleSingle-file dynamics of colloids in circular channels: Time scales, scaling laws and their universality-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec719858-
dc.date.updated2022-04-08T17:17:52Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/811234/EU//ENFORCE-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)
Articles publicats en revistes (Institut de Recerca en Sistemes Complexos (UBICS))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
719858.pdf1.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons