Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJorba i Monte, Àngel-
dc.contributor.authorCapellera Font, Guillem-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Àngel Jorba i Monteca
dc.description.abstract[en] The finite element method (FEM) is one of the most widely used tools for solving different problems governed by partial differential equations (PDE’s). In this work we study the theoretical basis on which the FEM is based and we deal with two general problems: elliptic and parabolic. The main numerical and computational methods used to implement the FEM are also explained. Finally we apply the method in the one-dimensional and two-dimensional case. In the one-dimensional case we solve two examples by programming code in MATLAB language. In the two-dimensional case we solve an example using the FEATool Multiphysics
dc.format.extent55 p.-
dc.rightscc-by-nc-nd (c) Guillem Capellera Font, 2021-
dc.subject.classificationMètode dels elements finitsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationAnàlisi numèricaca
dc.subject.classificationEquacions en derivades parcialsca
dc.subject.otherFinite element methoden
dc.subject.otherBachelor's theses-
dc.subject.otherNumerical analysisen
dc.subject.otherPartial differential equationsen
dc.titleEl mètode dels elements finitsca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
codi_font.zipCodi font14.26 kBzipView/Open
tfg_guillem_capellera_font.pdfMemòria1.54 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons