Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/185163
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Fortiana Gregori, Josep | - |
dc.contributor.author | Iglesias Munilla, Andrea | - |
dc.date.accessioned | 2022-04-26T10:35:03Z | - |
dc.date.available | 2022-04-26T10:35:03Z | - |
dc.date.issued | 2021-06-20 | - |
dc.identifier.uri | https://hdl.handle.net/2445/185163 | - |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregori | ca |
dc.description.abstract | [en] Lasso (Least Absolute Shrinkage and Selection Operator) is a regression method that performs both regularization and variable selection, improving prediction accuracy and interpretability of the resulting model. In this project we follow evolution from the plain linear model, through Ridge regression, for many years the most popular technique to improve the precision of predictions, to Lasso. We delve into numerical procedures for calculating Lasso solutions: coordinate descent and LARS. We see some extensions of Lasso such as Elastic Net regression, a neat improvement when optimality fails. We illustrate these methods with several real data examples using the R programming language (see notebooks and HTML files in appendices to the main text). | ca |
dc.format.extent | 35 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | cat | ca |
dc.rights | cc-by-nc-nd (c) Andrea Iglesias Munilla, 2021 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | - |
dc.subject.classification | Anàlisi de regressió | ca |
dc.subject.classification | Treballs de fi de grau | - |
dc.subject.classification | Estadística | ca |
dc.subject.classification | Dades massives | ca |
dc.subject.other | Regression analysis | en |
dc.subject.other | Bachelor's theses | - |
dc.subject.other | Statistics | en |
dc.subject.other | Big data | en |
dc.title | El Lasso: regularització i selecció de predictors | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_andrea_iglesias_munilla.pdf | Memòria | 634.05 kB | Adobe PDF | View/Open |
notebooks.zip | Codi font | 1.14 MB | zip | View/Open |
This item is licensed under a
Creative Commons License