Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/185534
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCasacuberta, Carles-
dc.contributor.authorMartı́nez Marı́n, Marian-
dc.date.accessioned2022-05-11T10:29:25Z-
dc.date.available2022-05-11T10:29:25Z-
dc.date.issued2021-06-20-
dc.identifier.urihttps://hdl.handle.net/2445/185534-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Carles Casacubertaca
dc.description.abstract[en] One of the main challenges that neuroscience faces nowadays is to understand how the brain represents different stimuli. This involves dealing with large amounts of data, which are usually high-dimensional and have to be processed to unveil how they are related with the associated cognitive processes. This work describes methods to preserve the topology of recorded data when their dimensionality is reduced, using predictions from neural coding theory. Relevant dimensionality reduction techniques are exposed, along with a couple of examples where persistent homology is crucial to discriminate the resulting neural manifold from being a circle or a torus. It is impossible to infer this from dimensionality reduction alone. Thus, to combine both techniques is essential for the manifold’s parameterization and the subsequent variable decoding to be successful.ca
dc.format.extent65 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Marian Martı́nez Marı́n, 2021-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationHomologiaca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationTopologia algebraicaca
dc.subject.classificationNeuronesca
dc.subject.otherHomologyen
dc.subject.otherBachelor's theses-
dc.subject.otherAlgebraic topologyen
dc.subject.otherNeuronsen
dc.titleTopology preservation under dimensionality reduction during neural manifold discoveryca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_marian_martinez_marin.pdfMemòria17.23 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons