Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/185952
Title: | Twitter engagement model for RecSys Challenge 2021 |
Author: | Moreno Blanco, Marcos Torralba Agell, Adrià |
Director/Tutor: | Seguí Mesquida, Santi Gilabert Roca, Pere |
Keywords: | Sistemes d'ajuda a la decisió Xarxes socials en línia Teoria de la predicció Treballs de fi de màster Dades massives Decision support systems Online social networks Prediction theory Master's theses Big data |
Issue Date: | 1-Jul-2021 |
Abstract: | [en] Recommendation systems is an interesting and wide field of research and it is present in a huge amount of different areas in our daily life. The RecSys ACM conference is the most important conference in the recommendation area and every year they organise a competition: the RecSys Challenge. The work presented here aims to solve the RecSys 2021 Challenge which consists of giving a probability to two Twitter users that interact. In this project we have worked in the development of a model which uses the power of Gradient Boosting Trees to combine multiple hand-crafted features in an aim to represent the interaction between the users. Our team reached the 14th place in the overall challenge leaderboard and is placed between the 7th and the 9th place in terms of Like overall performance. |
Note: | Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Santi Seguí Mesquida i Pere Gilabert Roca |
URI: | https://hdl.handle.net/2445/185952 |
Appears in Collections: | Programari - Treballs de l'alumnat Màster Oficial - Fonaments de la Ciència de Dades |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfm_moreno_blanco_torralba_agell.pdf | Memòria | 2 MB | Adobe PDF | View/Open |
RecSys2021-main.zip | Codi font | 1.06 MB | zip | View/Open |
This item is licensed under a
Creative Commons License