Please use this identifier to cite or link to this item:
Title: Twitter engagement model for RecSys Challenge 2021
Author: Moreno Blanco, Marcos
Torralba Agell, Adrià
Director/Tutor: Seguí Mesquida, Santi
Gilabert Roca, Pere
Keywords: Sistemes d'ajuda a la decisió
Xarxes socials en línia
Teoria de la predicció
Treballs de fi de màster
Dades massives
Decision support systems
Online social networks
Prediction theory
Master's theses
Big data
Issue Date: 1-Jul-2021
Abstract: [en] Recommendation systems is an interesting and wide field of research and it is present in a huge amount of different areas in our daily life. The RecSys ACM conference is the most important conference in the recommendation area and every year they organise a competition: the RecSys Challenge. The work presented here aims to solve the RecSys 2021 Challenge which consists of giving a probability to two Twitter users that interact. In this project we have worked in the development of a model which uses the power of Gradient Boosting Trees to combine multiple hand-crafted features in an aim to represent the interaction between the users. Our team reached the 14th place in the overall challenge leaderboard and is placed between the 7th and the 9th place in terms of Like overall performance.
Note: Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2020-2021. Tutor: Santi Seguí Mesquida i Pere Gilabert Roca
Appears in Collections:Programari - Treballs de l'alumnat
Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
tfm_moreno_blanco_torralba_agell.pdfMemòria2 MBAdobe PDFView/Open
RecSys2021-main.zipCodi font1.06 MBzipView/Open

This item is licensed under a Creative Commons License Creative Commons