Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSerrano Moral, Ma. Ángeles (María Ángeles)cat
dc.contributor.authorBoguñá, Mariáncat
dc.description.abstractThe percolation properties of clustered networks are analyzed in detail. In the case of weak clustering, we present an analytical approach that allows us to find the critical threshold and the size of the giant component. Numerical simulations confirm the accuracy of our results. In more general terms, we show that weak clustering hinders the onset of the giant component whereas strong clustering favors its appearance. This is a direct consequence of the differences in the k-core structure of the networks, which are found to be totally different depending on the level of clustering. An empirical analysis of a real social network confirms our predictions.eng
dc.format.extent8 p.-
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a:
dc.relation.ispartofPhysical Review E, 2006, vol. 74, núm. 5, p. 056115-1-056115-8-
dc.relation.isbasedonArticles publicats en revistes (Física de la Matèria Condensada)-
dc.rights(c) American Physical Society, 2006-
dc.subject.classificationFísica mèdicacat
dc.subject.classificationSistemes no linealscat
dc.subject.otherMedical physicseng
dc.subject.otherNonlinear systemseng
dc.titleClustering in complex networks. II. Percolation propertieseng
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
557924.pdf646.73 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.