Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/18841
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPorrà i Rovira, Josep Mariacat
dc.contributor.authorMasoliver, Jaume, 1951-cat
dc.contributor.authorLindenberg, Katjacat
dc.date.accessioned2011-07-07T12:53:49Z-
dc.date.available2011-07-07T12:53:49Z-
dc.date.issued1994-
dc.identifier.issn1063-651X-
dc.identifier.urihttps://hdl.handle.net/2445/18841-
dc.description.abstractWe study the mean exit time of a free inertial random process from a region in space. The acceleration alternatively takes the values +[ital a] and [minus][ital a] for random periods of time governed by a common distribution [psi]([ital t]). The mean exit time satisfies an integral equation that reduces to a partial differential equation if the random acceleration is Markovian. Some qualitative features of the behavior of the system are discussed and checked by simulations. Among these features, the most striking is the discontinuity of the mean exit time as a function of the initial conditions.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://doi.org/10.1103/PhysRevE.50.1985cat
dc.relation.ispartofPhysical Review E, 1994, vol. 50, núm. 3, p. 1985-1993-
dc.relation.urihttp://doi.org/10.1103/PhysRevE.50.1985-
dc.rights(c) American Physical Society, 1994-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationFísica estadísticacat
dc.subject.classificationTermodinàmicacat
dc.subject.otherStatistical physicseng
dc.subject.otherThermodynamicseng
dc.titleMean exit times for free inertial stochastic processeseng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec82153-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
82153.pdf1.36 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.