Please use this identifier to cite or link to this item:
Title: Damage spreading transition in glasses: A probe for the ruggedness of the configurational landscape
Author: Heerema, M.
Ritort Farran, Fèlix
Keywords: Física estadística
Sistemes no lineals
Propietats magnètiques
Equacions d'estat
Regla de les fases i equilibri
Transformacions de fase (Física estadística)
Propietats magnètiques
Statistical physics
Nonlinear systems
Magnetic properties
Equations of state
Phase rule and equilibrium
Phase transformations (Statistical physics)
Magnetic properties
Issue Date: 1999
Publisher: The American Physical Society
Abstract: We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.
Note: Reproducció del document publicat a:
It is part of: Physical Review E, 1999, vol. 60, núm. 4, p. 3646-3665
Related resource:
ISSN: 1063-651X
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
143493.pdf247.13 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.