Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/191160
Title: | The Dirichlet problem and Kakutani’s theorem |
Author: | Ibarra García, Nerea |
Director/Tutor: | Massaneda Clares, Francesc Xavier |
Keywords: | Problema de Dirichlet Treballs de fi de grau Problemes de contorn Moviment brownià Anàlisi harmònica Dirichlet problem Bachelor's theses Boundary value problems Brownian movements Harmonic analysis |
Issue Date: | 13-Jun-2022 |
Abstract: | [en] In this memoir we prove a weak version in $\mathbb{R}^2$ of Kakutani's theorem which gives a solution to the Dirichlet problem. The Dirichlet problem is a classical problem in partial differential equations with many applications in various fields. Given a bounded domain $D \subset$ $\mathbb{R}^d$ and a function $f$ continuous at $\partial D$, the Dirichlet problem consists in finding an harmonic function $u$ on $D$, which matches the values of $f$ on the boundary. It is known that for very general domains the solution exists and is unique. The solution given by Kakutani in 1944 is based in the use of probabilistic methods, specifically in the properties of Brownian motion, which will play an important role throughout this memoir. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Francesc Xavier Massaneda Clares |
URI: | http://hdl.handle.net/2445/191160 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_nerea_ibarra_garcia.pdf | Memòria | 692.85 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License