Please use this identifier to cite or link to this item:
Title: The Dirichlet problem and Kakutani’s theorem
Author: Ibarra García, Nerea
Director/Tutor: Massaneda Clares, Francesc Xavier
Keywords: Problema de Dirichlet
Treballs de fi de grau
Problemes de contorn
Moviment brownià
Anàlisi harmònica
Dirichlet problem
Bachelor's theses
Boundary value problems
Brownian movements
Harmonic analysis
Issue Date: 13-Jun-2022
Abstract: [en] In this memoir we prove a weak version in $\mathbb{R}^2$ of Kakutani's theorem which gives a solution to the Dirichlet problem. The Dirichlet problem is a classical problem in partial differential equations with many applications in various fields. Given a bounded domain $D \subset$ $\mathbb{R}^d$ and a function $f$ continuous at $\partial D$, the Dirichlet problem consists in finding an harmonic function $u$ on $D$, which matches the values of $f$ on the boundary. It is known that for very general domains the solution exists and is unique. The solution given by Kakutani in 1944 is based in the use of probabilistic methods, specifically in the properties of Brownian motion, which will play an important role throughout this memoir.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Francesc Xavier Massaneda Clares
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_nerea_ibarra_garcia.pdfMemòria692.85 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons