Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/191191
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Torra Porras, Salvador | - |
dc.contributor.author | Rius Carretero, David | - |
dc.date.accessioned | 2022-11-28T11:57:26Z | - |
dc.date.available | 2022-11-28T11:57:26Z | - |
dc.date.issued | 2022 | - |
dc.identifier.uri | https://hdl.handle.net/2445/191191 | - |
dc.description | Treballs Finals del Màster de Ciències Actuarials i Financeres, Facultat d'Economia i Empresa, Universitat de Barcelona, Curs: 2021-2022, Tutor: Salvador Torra Porras | ca |
dc.description.abstract | En este trabajo se ha realizado una breve introducción sobre que es una Regresión de Proceso Gaussiano (GPR) y dos aplicaciones que pueden integrarse en el ámbito de las Ciencias Actuariales. Por un lado, se ha realizado un ejercicio de interpolación sobre las tablas de mortalidad PASEM Unisex 2020, concluyendo que el GPR es una fuerte herramienta de interpolación y permite una tarificación más ajustada en el ramo de Vida. Por otro lado, se ha integrado el GPR como medida de predicción de provisiones en los ramos de No-Vida, obteniendo unos datos de salida prometedores. Por último, se concluye que un GPR puede ser un instrumento útil, siempre y cuando, se realice una buena selección del Kernel y un correcto período de entrenamiento del modelo. | ca |
dc.format.extent | 50 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | spa | ca |
dc.rights | cc-by-nc-nd (c) Rius Carretero, 2022 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Màster Oficial - Ciències Actuarials i Financeres (CAF) | - |
dc.subject.classification | Aplicacions de Gauss | cat |
dc.subject.classification | Estadística bayesiana | cat |
dc.subject.classification | Estadística no paramètrica | cat |
dc.subject.classification | Treballs de fi de màster | cat |
dc.subject.other | Gauss maps | eng |
dc.subject.other | Bayesian statistical decision | eng |
dc.subject.other | Nonparametric statistics | eng |
dc.subject.other | Master's theses | eng |
dc.title | Gaussian Process Regression como técnica bayesiana no paramétrica. Dos aplicaciones actuariales: Vida y No Vida | ca |
dc.type | info:eu-repo/semantics/masterThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Màster Oficial - Ciències Actuarials i Financeres (CAF) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
TFM-CAF_RiusCarretero.pdf | 1.57 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License