Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/191335
Title: Reversible barocaloric effects over a large temperature span in fullerite C60
Author: Li, Junning
Dunstan, David
Lou, Xiaojie
Planes Vila, Antoni
Mañosa, Lluís
Barrio, María
Tamarit, Josep Lluís
Lloveras, Pol
Keywords: Ciència dels materials
Cristalls moleculars
Ful·lerens
Materials science
Molecular crystals
Fullerenes
Issue Date: 2020
Publisher: Royal Society of Chemistry
Abstract: Solid-state cooling methods based on field-driven first-order phase transitions are often limited by significant hysteresis and small temperature span, which increase the input work required to drive the cooling cycle reversibly and reduce the temperature range of operation. Here we show that giant reversible caloric effects can be driven using low hydrostatic pressures in the molecular crystal of fullerene C60 across its order-disorder first-order phase transition due to a small transition hysteresis and a high sensitivity of the transition to pressure. In particular, we obtain isothermal entropy changes ΔS = 25 J K−1 kg−1 under reversible application and removal of a pressure as low as p = 0.05 GPa. We also demonstrate that these features allow us to obtain these giant effects in a wide temperature span around room temperature which, furthermore, is desirable for single-component regenerative coolers. For a pressure change of p = 0.41 GPa, we obtain giant reversible values of ΔS = 31 J K−1 kg−1 and ΔT = 11 K, in a temperature interval larger than 50 K. This very good barocaloric performance postulates C60 as one of the best candidates known so far to be considered by engineers for the development of barocaloric devices. The physics underlying these caloric effects is also analyzed.
Note: Versió postprint del document publicat a: https://doi.org/10.1039/d0ta05399f
It is part of: Journal of Materials Chemistry A, 2020, vol. 8, p. 20354-20362
URI: http://hdl.handle.net/2445/191335
Related resource: https://doi.org/10.1039/d0ta05399f
ISSN: 2050-7488
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
705834.pdf6.42 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.