Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/191525
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGràcia-Condal, Adrià-
dc.contributor.authorPlanes Vila, Antoni-
dc.contributor.authorMañosa, Lluís-
dc.contributor.authorWei, Zhiyang-
dc.contributor.authorGuo, Jianping-
dc.contributor.authorSoto-Parra, Daniel E.-
dc.contributor.authorLiu, Jian-
dc.date.accessioned2022-12-12T17:22:08Z-
dc.date.available2022-12-12T17:22:08Z-
dc.date.issued2022-08-23-
dc.identifier.issn2475-9953-
dc.identifier.urihttp://hdl.handle.net/2445/191525-
dc.description.abstractWe have studied the multicaloric properties of a Ni-Mn-Ga-Cu alloy. In this alloy, application of magnetic field and uniaxial stress shift its martensitic transition towards higher temperatures which results in synergic magnetocaloric and elastocaloric effects. By a proper numerical treatment of the calorimetric curves obtained under applied magnetic field and uniaxial stress we have obtained the entropy S(T,μ0H,σ) as a function of the magnetic field, uniaxial stress, and temperature over the whole phase space under study. We have determined the different entropy contributions to the multicaloric effect in this alloy, and noticeably we have evidenced the role played by the interplay between magnetic and vibrational degrees of freedom. A comparison between single caloric and multicaloric effects shows that appropriate combinations of magnetic field and stress reduce the magnitude of the specific field required to obtain a given value of the isothermal entropy and adiabatic temperature changes. For example, at 299 K, to achieve an entropy change (ΔS) of −14 J kg−1K−1, a magnetic field of ∼2.5 T or a uniaxial stress of 19 MPa are required, while a combination of dual fields of (1 T, 12 MPa) yields to the same value of ΔS. Moreover, the maximum adiabatic temperature change is enlarged up to 9.4 K by the dual fields, higher than the value obtained by a single field (∼7 K). The advantage of multicaloric effect is particularly relevant at low magnetic fields which are achievable by permanent magnets. Our findings open new avenues for using multicaloric materials in novel refrigeration technologies.-
dc.format.extent8 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Physical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevMaterials.6.084403-
dc.relation.ispartofPhysical Review Materials, 2022, vol. 6, p. 1-8-
dc.relation.urihttps://doi.org/10.1103/PhysRevMaterials.6.084403-
dc.rights(c) American Physical Society, 2022-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationCiència dels materials-
dc.subject.classificationCamps magnètics-
dc.subject.classificationPropietats magnètiques-
dc.subject.otherMaterials science-
dc.subject.otherMagnetic fields-
dc.subject.otherMagnetic properties-
dc.titleMagnetic and structural entropy contributions to the multicaloric effects in Ni-Mn-Ga-Cu-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec725143-
dc.date.updated2022-12-12T17:22:08Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
725143.pdf1.64 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.