Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/192131
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGottschall, Tino-
dc.contributor.authorGràcia Condal, Adrià-
dc.contributor.authorFries, Maximilian-
dc.contributor.authorTaublel, A.-
dc.contributor.authorPfeuffer, L.-
dc.contributor.authorMañosa, Lluís-
dc.contributor.authorPlanes Vila, Antoni-
dc.contributor.authorSkokov, K.P.-
dc.contributor.authorGutfleisch, O.-
dc.date.accessioned2023-01-12T16:35:54Z-
dc.date.available2023-01-12T16:35:54Z-
dc.date.issued2018-
dc.identifier.issn1476-1122-
dc.identifier.urihttp://hdl.handle.net/2445/192131-
dc.description.abstractThe giant magnetocaloric effect, in which large thermal changes are induced in a material on the application of a magnetic field, can be used for refrigeration applications, such as the cooling of systems from a small to a relatively large scale. However, commercial uptake is limited. We propose an approach to magnetic cooling that rejects the conventional idea that the hysteresis inherent in magnetostructural phase-change materials must be minimized to maximize the reversible magnetocaloric effect. Instead, we introduce a second stimulus, uniaxial stress, so that we can exploit the hysteresis. This allows us to lock-in the ferromagnetic phase as the magnetizing field is removed, which drastically removes the volume of the magnetic field source and so reduces the amount of expensive Nd-Fe-B permanent magnets needed for a magnetic refrigerator. In addition, the mass ratio between the magnetocaloric material and the permanent magnet can be increased, which allows scaling of the cooling power of a device simply by increasing the refrigerant body. The technical feasibility of this hysteresis-positive approach is demonstrated using Ni-Mn-In Heusler alloys. Our study could le-
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41563-018-0166-6-
dc.relation.ispartofNature Materials, 2018, vol. 17, p. 929-934-
dc.relation.urihttps://doi.org/10.1038/s41563-018-0166-6-
dc.rights(c) Gottschall, Tino et al., 2018-
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationHistèresi-
dc.subject.classificationPropietats magnètiques-
dc.subject.classificationCiència dels materials-
dc.subject.otherHysteresis-
dc.subject.otherMagnetic properties-
dc.subject.otherMaterials science-
dc.titleA multicaloric cooling cycle that exploits thermal hysteresis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec685400-
dc.date.updated2023-01-12T16:35:54Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
685400.pdf5.17 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.