Please use this identifier to cite or link to this item:
Title: Hodge-de Rham numbers of almost complex 4-manifolds
Author: Cirici, Joana
Wilson, Scott O.
Keywords: Varietats complexes
Geometria diferencial global
Complex manifolds
Global differential geometry
Issue Date: Dec-2022
Publisher: Elsevier GmbH
Abstract: We introduce and study Hodge-de Rham numbers for compact almost complex 4-manifolds, generalizing the Hodge numbers of a complex surface. The main properties of these numbers in the case of complex surfaces are extended to this more general setting, and it is shown that all Hodge-de Rham numbers for compact almost complex 4-manifolds are determined by the topology, except for one (the irregularity). Finally, these numbers are shown to prohibit the existence of complex structures on certain manifolds, without reference to the classification of surfaces.
Note: Reproducció del document publicat a:
It is part of: Expositiones Mathematicae, 2022, vol. 40, num. 4, p. 1244-1260
Related resource:
ISSN: 0723-0869
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
727829.pdf312.14 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons