Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/193827
Title: | Convergence of delay equations driven by a Hölder continuous function of order 1/3<β<1/2. |
Author: | Besalú, Mireia Binotto, Giulia Rovira Escofet, Carles |
Keywords: | Equacions diferencials retardades Equacions diferencials estocàstiques Convergència (Matemàtica) Delay differential equations Stochastic differential equations Convergence |
Issue Date: | 26-Jun-2020 |
Publisher: | Texas State University - San Marcos |
Abstract: | In this article we show that, when the delay approaches zero, the solution of multidimensional delay differential equations driven by a Hölder continuous function of order 1/3 < \beta < 1/2 converges with the supremum norm to the solution for the equation without delay. Finally we discuss the applications to stochastic differential equations. |
Note: | Reproducció del document publicat a: https://ejde.math.txstate.edu/Volumes/2020/65/abstr.html |
It is part of: | Electronic Journal of Differential Equations, 2020, vol. 2020, num. 65, p. 1-27 |
URI: | http://hdl.handle.net/2445/193827 |
ISSN: | 1072-6691 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) Articles publicats en revistes (Genètica, Microbiologia i Estadística) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
707335.pdf | 400.9 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.