Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/194104
Title: | Constructions of Lindelöf scattered P-spaces |
Author: | Martínez Alonso, Juan Carlos Soukup, Lajos |
Keywords: | Nombres cardinals Teoria de conjunts Topologia Espais topològics Cardinal numbers Set theory Topology Topological spaces |
Issue Date: | 20-Sep-2022 |
Publisher: | Institute of Mathematics, Polish Academy of Sciences |
Abstract: | We construct locally Lindelöf scattered P-spaces (LLSP spaces, for short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width $\omega_1$ and height $\omega_2$ and that it is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\omega_3$. Also, we prove a stepping up theorem which, for every cardinal $\lambda \geq \omega_2$, permits us to construct from an LLSP space of width $\omega_1$ and height $\lambda$ satisfying certain additional properties an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\lambda^{+}$. As consequences of the above results, we obtain the following theorems: (1) For every ordinal $\alpha<\omega_3$ there is an LLSP space of width $\omega_1$ and height $\alpha$. (2) It is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\omega_4$. |
Note: | Versió postprint del document publicat a: https://doi.org/10.4064/fm228-7-2022 |
It is part of: | Fundamenta Mathematicae, 2022, vol. 259, num. 3, p. 271-286 |
URI: | https://hdl.handle.net/2445/194104 |
Related resource: | https://doi.org/10.4064/fm228-7-2022 |
ISSN: | 0016-2736 |
Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
726103.pdf | 175.83 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.