Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/195068
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArribas-Bel, Daniel-
dc.contributor.authorGarcía López, Miquel-Àngel-
dc.contributor.authorViladecans Marsal, Elisabet-
dc.date.accessioned2023-03-10T17:58:58Z-
dc.date.available2023-03-10T17:58:58Z-
dc.date.issued2021-09-
dc.identifier.issn0094-1190-
dc.identifier.urihttps://hdl.handle.net/2445/195068-
dc.description.abstractThis paper proposes a novel methodology for delineating urban areas based on a machine learning algorithm that groups buildings within portions of space of sufficient density. To do so, we use the precise geolocation of all 12 million buildings in Spain. We exploit building heights to create a new dimension for urban areas, namely, the vertical land, which provides a more accurate measure of their size. To better understand their internal structure and to illustrate an additional use for our algorithm, we also identify employment centers within the delineated urban areas. We test the robustness of our method and compare our urban areas to other delineations obtained using administrative borders and commuting-based patterns. We show that: 1) our urban areas are more similar to the commuting-based delineations than the administrative boundaries but that they are more precisely measured; 2) when analyzing the urban areas' size distribution, Zipf's law appears to hold for their population, surface and vertical land; and 3) the impact of transportation improvements on the size of the urban areas is not underestimated.-
dc.format.extent20 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.jue.2019.103217-
dc.relation.ispartofJournal of Urban Economics, 2021, vol. 125, núm. 103217, p. 1-20-
dc.relation.urihttps://doi.org/10.1016/j.jue.2019.103217-
dc.rightscc-by (c) Arribas Bel et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Economia)-
dc.subject.classificationEconomia urbana-
dc.subject.classificationPolítica urbana-
dc.subject.classificationDesenvolupament urbà-
dc.subject.classificationGeografia econòmicacat
dc.subject.otherUrban economics-
dc.subject.otherEconomic geography-
dc.subject.otherUrban policy-
dc.subject.otherUrban developmenteng
dc.titleBuilding(s and) cities: Delineating urban areas with a machine learning algorithm-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec693262-
dc.date.updated2023-03-10T17:58:58Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Economia)

Files in This Item:
File Description SizeFormat 
693262.pdf6.28 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons