Please use this identifier to cite or link to this item:
                
    
    https://hdl.handle.net/2445/195282| Title: | Elementary matrix decomposition and the computation of Darmon points with higher conductor | 
| Author: | Guitart Morales, Xavier Masdeu, Marc | 
| Keywords: | Funcions L Àlgebra lineal Teoria de la matriu S Teoria de nombres L-functions Linear algebra S-matrix theory Number theory | 
| Issue Date: | Mar-2015 | 
| Publisher: | American Mathematical Society (AMS) | 
| Abstract: | We extend the algorithm of Darmon-Green and Darmon-Pollack for computing $p$-adic Darmon points on elliptic curves to the case of composite conductor. We also extend the algorithm of Darmon-Logan for computing ATR Darmon points to treat curves of nontrivial conductor. Both cases involve an algorithmic decomposition into elementary matrices in congruence subgroups $\Gamma_1(\mathfrak{N})$ for ideals $\mathfrak{N}$ in certain rings of $S$-integers. We use these extensions to provide additional evidence in support of the conjectures on the rationality of Darmon points. | 
| Note: | Versió postprint del document publicat a: https://doi.org/10.1090/S0025-5718-2014-02853-6 | 
| It is part of: | Mathematics of Computation, 2015, vol. 84, num. 292, p. 875-893 | 
| URI: | https://hdl.handle.net/2445/195282 | 
| Related resource: | https://doi.org/10.1090/S0025-5718-2014-02853-6 | 
| ISSN: | 0025-5718 | 
| Appears in Collections: | Articles publicats en revistes (Matemàtiques i Informàtica) | 
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| 650049.pdf | 347.69 kB | Adobe PDF | View/Open | 
    This item is licensed under a
    Creative Commons License
	 
 
	 
	