Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/196620
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMundet i Riera, Ignasi-
dc.contributor.authorRiera Vaca, Gabriela-
dc.date.accessioned2023-04-11T09:41:05Z-
dc.date.available2023-04-11T09:41:05Z-
dc.date.issued2022-06-13-
dc.identifier.urihttps://hdl.handle.net/2445/196620-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Ignasi Mundet i Rieraca
dc.description.abstract[en] In mathematics, an elementary proof is one that uses only basic techniques. In this work we provide the elementary proof of the Jordan curve at $\mathbb{R}^2$ and the Brouwer fixed point theorems. The Jordan curve theorem on $\mathbb{R}^2$ tells us that every simple closed curve separates the plane into two connected components. The elementary proof uses four lemmas, whose proofs we also carry out, and consists of approximating the curve by means of polygons. Let $\mathbb{B}^n \subset \mathbb{R}^n$ be the n-dimensional unit ball. Brouwer's fixed point theorem tells us that every continuous function $f: \mathbb{B}^n \rightarrow \mathbb{B}^n$ has a fixed point. The elementary proof is based on the fact that the compact, convex and non-empty subsets of $\mathbb{R}^n$ are homeomorphic and on Sperner's Lemma, which we also state and prove. Sperner's Lemma is a combinatorial result of coloring n-dimensional simplices.ca
dc.format.extent44 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isospaca
dc.rightscc-by-nc-nd (c) Gabriela Riera Vaca, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationTopologiaca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationGeometria euclidianaca
dc.subject.classificationOperadors no linealsca
dc.subject.classificationTeoria del punt fixca
dc.subject.otherTopologyen
dc.subject.otherBachelor's theses-
dc.subject.otherEuclidean geometryen
dc.subject.otherNonlinear operatorsen
dc.subject.otherFixed point theoryen
dc.titleTeoremas de Jordan y Brouwer: demostraciones elementalesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_riera_vaca_gabriela.pdfMemòria1.95 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons