Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/196800
Title: Complement de Schur i identitats detereminantals
Author: Sosa i Solé, Laia
Director/Tutor: Montoro López, M. Eulàlia
Keywords: Determinants (Matemàtica)
Treballs de fi de grau
Àlgebra lineal
Matrius (Matemàtica)
Determinants (Mathematics)
Bachelor's theses
Linear algebra
Matrices
Issue Date: 13-Jun-2022
Abstract: [en] In the first major block of this paper, the aim is to establish a clear definition of the Schur complement of a non-singular main submatrix of a block matrix, as well as some immediate basic properties that allow us to see their applications in various fields of mathematics, following the scheme proposed in [10]. Subsequently, it is intended to give a formal definition of a determinantal identity after having considered some relevant ones, seen in [4], which derive from the properties already analyzed of the Schur complement, and to then study determinantal identities extension methods with which we shall, given a starting determinant identity, get new ones. Here we highlight Muir’s Law of Extensible Minors and the Law of Cayley of the Complementarities. Finally, we will see how virtually all determinantal identities and extension laws are equivalent to each other, as shown in [6], [7] and [5].
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: M. Eulàlia Montoro López
URI: https://hdl.handle.net/2445/196800
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_sosa_sole_laia.pdfMemòria806 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons