Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/197442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNaranjo del Val, Juan Carlos-
dc.date.accessioned2023-05-02T07:30:17Z-
dc.date.available2023-05-02T07:30:17Z-
dc.date.issued2003-01-23-
dc.identifier.issn0075-4102-
dc.identifier.urihttps://hdl.handle.net/2445/197442-
dc.description.abstractLet $P$ be the Prym variety attached to an unramified double covering $\tilde{C} \rightarrow C$. Let $X=X(\tilde{\boldsymbol{C}}, C)$ be the variety of special divisors which birationally parametrizes the theta divisor in $P$. We prove that $X$ is the projectivization of the Fourier-Mukai transform of a coherent sheaf $p_*(M)$, where $M$ is an invertible sheaf on $\tilde{C}$ and $p: \tilde{C} \rightarrow P$ is the natural embedding. We apply this fact to give an algebraic proof of the following Torelli type statement proved by Smith and Varley in the complex case: under some hypothesis the variety $X$ determines the covering $\tilde{C} \rightarrow C$.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherWalter de Gruyter-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1515/crll.2003.057-
dc.relation.ispartofJournal für die Reine und Angewandte Mathematik, 2003, vol. 560, p. 221-230-
dc.relation.urihttps://doi.org/10.1515/crll.2003.057-
dc.rights(c) Walter de Gruyter, 2003-
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)-
dc.subject.classificationCorbes algebraiques-
dc.subject.classificationGeometria algebraica-
dc.subject.otherAlgebraic curves-
dc.subject.otherAlgebraic geometry-
dc.titleFourier Transform and Prym varieties-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec523916-
dc.date.updated2023-05-02T07:30:17Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
523916.pdf100.63 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.