Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/198841
Title: | El mètode de Phragmén-Lindelöf i aplicacions: teorema de Riesz-Thorin i d’incertesa de Hardy |
Author: | Palacios Torrell, Roger |
Director/Tutor: | Cascante, Ma. Carme (Maria Carme) |
Keywords: | Teoria geomètrica de funcions Treballs de fi de grau Operadors lineals Anàlisi harmònica Geometric function theory Bachelor's theses Linear operators Harmonic analysis |
Issue Date: | 24-Jan-2023 |
Abstract: | [en] The Maximum Modulus Principle, which is one of the most important results in complex analysis, states that a holomorphic function defined on a bounded domain of $\mathbb{C}$, takes its maximum value at some point from the domain's boundary. Hence, the objective of this work is to introduce and apply the Phragmén-Lindelöf method in order to extend the conclusions given by the Maximum Modulus Principle to unbounded domains. Furthermore, this method will be used to see some applications such as: the Hadamard Three Lines Theorem, which provides good enough bounds for holomorphic functions on vertical strips; the Riesz-Thorin Interpolation Theorem, which establishes that a linear operator between measurable function spaces is bound in certain Lebesgue spaces $L^p$; and the Hardy's Uncertainty Principle, which claims that a measurable function and its Fourier transform cannot simultaneously have compact support, unless they both are identically zero. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Ma. Carme Cascante |
URI: | https://hdl.handle.net/2445/198841 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_palacios_torrell_roger.pdf | Memòria | 688.26 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License