Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/199404
Title: Critical review on the mechanisms of Fe2+ regeneration in the electro-Fenton process: Fundamentals and boosting strategies
Author: Deng, Fengxia
Olvera-Vargas, Hugo
Zhou, Minghua
Qiu, Shan
Sirés Sadornil, Ignacio
Brillas, Enric
Keywords: Aigua oxigenada
Electroquímica
Oxidació
Hydrogen peroxide
Electrochemistry
Oxidation
Issue Date: 14-Mar-2023
Publisher: American Chemical Society
Abstract: This review presents an exhaustive overview on the mechanisms of Fe3+ cathodic reduction within the context of the electro-Fenton (EF) process. Different strategies developed to improve the reduction rate are discussed, dividing them into two categories that regard the mechanistic feature that is promoted: electron transfer control and mass transport control. Boosting the Fe3+ conversion to Fe2+ via electron transfer control includes: (i) the formation of a series of active sites in both carbon- and metal-based materials and (ii) the use of other emerging strategies such as single-atom catalysis or confinement effects. Concerning the enhancement of Fe2+ regeneration by mass transport control, the main routes involve the application of magnetic fields, pulse electrolysis, interfacial Joule heating effects, and photoirradiation. Finally, challenges are singled out, and future prospects are described. This review aims to clarify the Fe3+/Fe2+ cycling process in the EF process, eventually providing essential ideas for smart design of highly effective systems for wastewater treatment and valorization at an industrial scale.
Note: Versió postprint del document publicat a: https://doi.org/10.1021/acs.chemrev.2c00684
It is part of: Chemical Reviews, 2023, vol. 123, p. 4635-4662
URI: http://hdl.handle.net/2445/199404
Related resource: https://doi.org/10.1021/acs.chemrev.2c00684
ISSN: 0009-2665
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
733496.pdf3.92 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.