Please use this identifier to cite or link to this item:
http://hdl.handle.net/2445/200775
Title: | Automatic segmentation of regions of interest with Deep Learning for postoperative endometrial carcinoma treatment |
Author: | Andrés Rodríguez, Arnau |
Director/Tutor: | Niñerola Baizán, Aida |
Keywords: | Aprenentatge profund Tomografia Càncer d'endometri Treballs de fi de grau Deep learning Tomography Endometrial cancer Bachelor's theses |
Issue Date: | Jun-2023 |
Abstract: | This project aims to evaluate deep learning algorithms’ suitability to correctly delineate the regions of interest on computer tomography images for dosimetric computations, in the context of postoperative endometrial carcinoma treatment. To achieve this goal, the project includes the complete training and evaluation of two deep learning networks. Furthermore, a qualitative assessment of the predicted dosimetric computations and a post-processing of the predicted results have been conducted |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutora: Aida Niñerola Baizan |
URI: | http://hdl.handle.net/2445/200775 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Andres-Rodriguez-Arnau.pdf | 638.83 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License