Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/201012
Título: Detection of Gravitational Wave signals using Machine Learning methods and Generative Pre-trained Transformers
Autor: Dana Ruiz, Abel
Director/Tutor: Andrade Weber, Tomás
Emparan García de Salazar, Roberto A.
Materia: Ones gravitacionals
Aprenentatge automàtic
Treballs de fi de grau
Gravitational waves
Machine learning
Bachelor's theses
Fecha de publicación: jun-2023
Resumen: We use Machine Learning methods based on Convolutional Neural Networks to search for gravitational waves signals above the background noise distribution for a data set of simulated gravitational waves and real noise signals from three detectors (LIGO Hanford, LIGO Livingston, and Virgo). A training data set is used to train the ML method to classify data streams in two groups: gravitational wave plus noise (label 1) or only noise (label 0). Later, the method predicts if data streams from a testing data set belong to one or an other category. To generate the code that implements the CNN algorithm we use Generative Pre-trained Transformers, specifically ChatGPT based on GPT-3 and compare them to a human-made CNN. The ML methods are capable to detect gravitational waves if we give ChatGPT freedom to create a CNN without specifying the parameters or the architecture, but are not satisfactory if we try to direct ChatGPT to a specific type of code.
Nota: Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutors: Tomás Andrade Weber, Roberto Emparan García de Salazar
URI: https://hdl.handle.net/2445/201012
Aparece en las colecciones:Treballs Finals de Grau (TFG) - Física

Archivos de este documento:
Archivo Descripción DimensionesFormato 
DANA RUÍZ ABEL_7999646.pdf448.42 kBAdobe PDFMostrar/Abrir


Este documento está sujeto a una Licencia Creative Commons Creative Commons