Por favor, use este identificador para citar o enlazar este documento:
https://hdl.handle.net/2445/201012
Título: | Detection of Gravitational Wave signals using Machine Learning methods and Generative Pre-trained Transformers |
Autor: | Dana Ruiz, Abel |
Director/Tutor: | Andrade Weber, Tomás Emparan García de Salazar, Roberto A. |
Materia: | Ones gravitacionals Aprenentatge automàtic Treballs de fi de grau Gravitational waves Machine learning Bachelor's theses |
Fecha de publicación: | jun-2023 |
Resumen: | We use Machine Learning methods based on Convolutional Neural Networks to search for gravitational waves signals above the background noise distribution for a data set of simulated gravitational waves and real noise signals from three detectors (LIGO Hanford, LIGO Livingston, and Virgo). A training data set is used to train the ML method to classify data streams in two groups: gravitational wave plus noise (label 1) or only noise (label 0). Later, the method predicts if data streams from a testing data set belong to one or an other category. To generate the code that implements the CNN algorithm we use Generative Pre-trained Transformers, specifically ChatGPT based on GPT-3 and compare them to a human-made CNN. The ML methods are capable to detect gravitational waves if we give ChatGPT freedom to create a CNN without specifying the parameters or the architecture, but are not satisfactory if we try to direct ChatGPT to a specific type of code. |
Nota: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutors: Tomás Andrade Weber, Roberto Emparan García de Salazar |
URI: | https://hdl.handle.net/2445/201012 |
Aparece en las colecciones: | Treballs Finals de Grau (TFG) - Física |
Archivos de este documento:
Archivo | Descripción | Dimensiones | Formato | |
---|---|---|---|---|
DANA RUÍZ ABEL_7999646.pdf | 448.42 kB | Adobe PDF | Mostrar/Abrir |
Este documento está sujeto a una
Licencia Creative Commons