Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/201714
Títol: DreamText: Harnessing text descriptions as an intermediate step for 3D reconstruction
Autor: Puriy Puriy, Nazar
Director/Tutor: Radeva, Petia
Rodrigues Sepúlveda Marques, Ricardo Jorge
Matèria: Visualització tridimensional
Intel·ligència artificial
Programari
Treballs de fi de grau
Aprenentatge automàtic
Three-dimensional display systems
Artificial intelligence
Computer software
Machine learning
Bachelor's theses
Data de publicació: 13-juny-2023
Resum: [en] The field of 3D generation, a rapidly emerging domain within generative AI, holds immense potential for various applications in fields such as architecture, product design, marketing, entertainment, and even in the novel realm of virtual reality. Enhancing 3D technologies bears significant utility in fostering society development and serves as a captivating and intellectually stimulating field of study, offering intriguing challenges and opportunities for innovative advancements. In this dissertation, we introduce DreamText, an innovative Image to 3D generative model that harnesses text descriptors as an intermediate step for 3D reconstruction. Our proposed method effectively learns to describe objects within images, capturing crucial object details while disregarding extraneous contextual information such as lighting, point of view, or specific arrangements. This learned information serves as the foundation for generating compelling and novel views of the object, subsequently facilitating the creation of a comprehensive and accurate 3D reconstruction. Remarkably, our approach achieves high quality results, surpassing current state-of-the-art methodologies like RealFusion (CVPR2023)[1] in several test cases. Concrete evidence of our results can be observed in the following link. Furthermore, we present FitFusion, which leverages the knowledge of a pretrained image generative model, Stable Diffusion, to train a Neural Radiance Field capable of generating 3D models when provided with image data during training. This concept stems from a comprehensive analysis and understanding of a previous model called Stable DreamFusion[2], combined with meticulous parameter tuning that culminates in improved outcomes. This project entails extensive mathematical and experimental analysis of cutting-edge models, encompassing a comprehensive understanding of their intricate details.
Nota: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Petia Radeva i Ricardo Jorge Rodrigues Sepúlveda Marques
URI: https://hdl.handle.net/2445/201714
Apareix en les col·leccions:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Fitxers d'aquest document:
Fitxer Descripció DimensionsFormat 
tfg_puriy_puriy_nazar.pdfMemòria81.41 MBAdobe PDFMostrar/Obrir
DreamText.zipCodi font3.6 GBzipMostrar/Obrir


Aquest document està subjecte a una Llicència Creative Commons Creative Commons