Por favor, use este identificador para citar o enlazar este documento:
https://hdl.handle.net/2445/202220
Título: | Study of stochastic differential equations driven by fractional brownian motion |
Autor: | Serrat i Castella, Abel |
Director/Tutor: | Márquez, David (Márquez Carreras) |
Materia: | Integrals estocàstiques Equacions diferencials estocàstiques Treballs de fi de màster Stochastic integrals Stochastic differential equations Master's thesis |
Fecha de publicación: | 28-jun-2023 |
Resumen: | [en] In this thesis we study and develop in detail the research paper Differential equations driven by fractional brownian motion by D. Nualart and A. Rascanu, 7]. It is a landmark paper in which the authors prove the existence and uniqueness of solution to stochastic differential equations driven by fractional Brownian motion of Hurst parameter $H \in(1 / 2,1)$. Moreover, they show that, under additional hypothesis, the solution has finite moments of all orders. They take a path-by-path approach given the Hölder-continuity property of the paths of the fractional Brownian motion. On our part, after a gentle introduction to the fractional integrals and derivatives and to the generalized Stieltjes integral, we fully develop the results and proofs of this paper. Not only that but we insert our own remarks and comment on the obtained results regarding the measurability of the solution. As a result, this thesis could be considered a companion paper intended to the reader interested in this important result but not versed in the foundations of stochastic differential equations. |
Nota: | Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2022-2023. Director: David Márquez |
URI: | https://hdl.handle.net/2445/202220 |
Aparece en las colecciones: | Màster Oficial - Matemàtica Avançada |
Archivos de este documento:
Archivo | Descripción | Dimensiones | Formato | |
---|---|---|---|---|
tfg_ serrat_i_castella_abel.pdf | Memòria | 670.53 kB | Adobe PDF | Mostrar/Abrir |
Este documento está sujeto a una
Licencia Creative Commons