Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/202605
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hammad, Sahibzada Saadoon | - |
dc.contributor.author | Iskandaryan, Ditsuhi | - |
dc.contributor.author | Trilles, Sergio | - |
dc.date.accessioned | 2023-10-06T17:28:06Z | - |
dc.date.available | 2023-10-06T17:28:06Z | - |
dc.date.issued | 2023-06-30 | - |
dc.identifier.issn | 2542-6605 | - |
dc.identifier.uri | https://hdl.handle.net/2445/202605 | - |
dc.description.abstract | Artificial Intelligence of Things (AIoT) is an emerging area of interest, and this can be used to obtain knowledge and take better decisions in the same Internet of Things (IoT) devices. IoT data are prone to anomalies due to various factors such as malfunctioning of sensors, low-cost devices, etc. Following the AIoT paradigm, this work explores anomaly detection in IoT urban noise sensor networks using a Long Short-Term Memory Autoencoder. Two autoencoder models are trained using normal data from two different sensors in the sensor network and tested for the detection of two different types of anomalies, i.e. point anomalies and collective anomalies. The results in terms of accuracy of the two models are 99.99% and 99.34%. The trained model is quantised, converted to TensorFlow Lite format and deployed on the ESP32 microcontroller (MCU). The inference time on the microcontroller is 4 ms for both models, and the power consumption of the MCU is 0.2693 W & PLUSMN; 0.039 and 0.3268 W & PLUSMN; 0.015. Heap memory consumption during the execution of the program for sensors TA120-T246187 and TA120-T246189 is 528 bytes and 744 bytes respectively. | - |
dc.format.extent | 15 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Elsevier BV | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.iot.2023.100848 | - |
dc.relation.ispartof | Internet of Things, 2023, vol. 23, p. 100848 | - |
dc.relation.uri | https://doi.org/10.1016/j.iot.2023.100848 | - |
dc.rights | cc by (c) Hammad, Sahibzada Saadoon et al., 2023 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) | - |
dc.subject.classification | Contaminació acústica | - |
dc.subject.classification | Ciutats intel·ligents | - |
dc.subject.other | Noise pollution | - |
dc.subject.other | Smart cities | - |
dc.title | An unsupervised TinyML approach applied to the detection of urban noise anomalies under the smart cities environment | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.date.updated | 2023-10-03T09:13:29Z | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
Appears in Collections: | Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
1-s2.0-S2542660523001713-main (1).pdf | 3.88 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License