Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/205800
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSchlüter, Agatha-
dc.contributor.authorVélez Santamaría, Valentina-
dc.contributor.authorVerdura, Edgard-
dc.contributor.authorRodríguez Palmero, Agustí-
dc.contributor.authorRuiz, Montserrat-
dc.contributor.authorFourcade, Stéphane-
dc.contributor.authorPlanas Serra, Laura-
dc.contributor.authorLaunay, Nathalie-
dc.contributor.authorGuilera, Cristina-
dc.contributor.authorMartínez, Juan José-
dc.contributor.authorHomedes Pedret, Christian-
dc.contributor.authorAlbertí Aguiló, M. Antonia-
dc.contributor.authorZulaika, Miren-
dc.contributor.authorMartí, Itxaso-
dc.contributor.authorTroncoso, Mónica-
dc.contributor.authorTomás Vila, Miguel-
dc.contributor.authorBullich, Gemma-
dc.contributor.authorGarcía Pérez, M. Asunción-
dc.contributor.authorSobrido Gómez, María Jesús-
dc.contributor.authorLópez Laso, Eduardo-
dc.contributor.authorFons, Carme-
dc.contributor.authorToro, Mireia del-
dc.contributor.authorMacaya, Alfons-
dc.contributor.authorGarcía Cazorla, Àngels-
dc.contributor.authorOrtiz Martínez, Antonio José-
dc.contributor.authorOrtez, Carlos Ignacio-
dc.contributor.authorCáceres Marzal, Cristina-
dc.contributor.authorMartínez Salcedo, Eduardo-
dc.contributor.authorMondragón, Elisabet-
dc.contributor.authorBarredo, Estíbaliz-
dc.contributor.authorAntón Airaldi, Ileana-
dc.contributor.authorRuíz Martínez, Javier-
dc.contributor.authorFernández Ramos, Joaquin A.-
dc.contributor.authorVázquez, Juan Francisco-
dc.contributor.authorDíez Porras, Laura-
dc.contributor.authorVázquez Cancela, María-
dc.contributor.authorO’Callaghan, Mar-
dc.contributor.authorPablo Sánchez, Tamara-
dc.contributor.authorNedkova Hristova, Velina-
dc.contributor.authorMaraña Pérez, Ana Isabel-
dc.contributor.authorBeltran, Sergi-
dc.contributor.authorGutiérrez Solana, Luis G.-
dc.contributor.authorPérez Jurado, Luis A.-
dc.contributor.authorAguilera Albesa, Sergio-
dc.contributor.authorLópez de Munain, Adolfo-
dc.contributor.authorCasasnovas, Carlos-
dc.contributor.authorPujol, Aurora, 1968--
dc.contributor.authorHSP/ATAXIA Workgroup-
dc.date.accessioned2024-01-16T22:08:27Z-
dc.date.available2024-01-16T22:08:27Z-
dc.date.issued2023-09-07-
dc.identifier.issn1756-994X-
dc.identifier.urihttps://hdl.handle.net/2445/205800-
dc.description.abstractBackgroundWhole-exome sequencing (WES) and whole-genome sequencing (WGS) have become indispensable tools to solve rare Mendelian genetic conditions. Nevertheless, there is still an urgent need for sensitive, fast algorithms to maximise WES/WGS diagnostic yield in rare disease patients. Most tools devoted to this aim take advantage of patient phenotype information for prioritization of genomic data, although are often limited by incomplete gene-phenotype knowledge stored in biomedical databases and a lack of proper benchmarking on real-world patient cohorts.MethodsWe developed ClinPrior, a novel method for the analysis of WES/WGS data that ranks candidate causal variants based on the patient's standardized phenotypic features (in Human Phenotype Ontology (HPO) terms). The algorithm propagates the data through an interactome network-based prioritization approach. This algorithm was thoroughly benchmarked using a synthetic patient cohort and was subsequently tested on a heterogeneous prospective, real-world series of 135 families affected by hereditary spastic paraplegia (HSP) and/or cerebellar ataxia (CA).ResultsClinPrior successfully identified causative variants achieving a final positive diagnostic yield of 70% in our real-world cohort. This includes 10 novel candidate genes not previously associated with disease, 7 of which were functionally validated within this project. We used the knowledge generated by ClinPrior to create a specific interactome for HSP/CA disorders thus enabling future diagnoses as well as the discovery of novel disease genes.ConclusionsClinPrior is an algorithm that uses standardized phenotype information and interactome data to improve clinical genomic diagnosis. It helps in identifying atypical cases and efficiently predicts novel disease-causing genes. This leads to increasing diagnostic yield, shortening of the diagnostic Odysseys and advancing our understanding of human illnesses.-
dc.format.extent19 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Science and Business Media LLC-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s13073-023-01214-2-
dc.relation.ispartofGenome Medicine, 2023, vol. 15, num. 1-
dc.relation.urihttps://doi.org/10.1186/s13073-023-01214-2-
dc.rightscc by (c) Schlüter, Agatha et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))-
dc.subject.classificationAlgorismes genètics-
dc.subject.classificationGenètica de poblacions-
dc.subject.otherGenetic algorithms-
dc.subject.otherPopulation Genetics-
dc.titleClinPrior: an algorithm for diagnosis and novel gene discovery by network-based prioritization-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2024-01-09T09:57:25Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid37679823-
Appears in Collections:Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
s13073-023-01214-2.pdf3.51 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons