Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/206183
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRodriguez Alvarez, Javier-
dc.contributor.authorLabarta, Amílcar-
dc.contributor.authorIdrobo, Juan Carlos-
dc.contributor.authorDell'Anna, Rossana-
dc.contributor.authorCian, Alessandro-
dc.contributor.authorGiubertoni, Damiano-
dc.contributor.authorBorrisé, Xavier-
dc.contributor.authorGuerrero, Albert-
dc.contributor.authorPérez Murano, Francesc-
dc.contributor.authorFraile Rodríguez, Arantxa-
dc.contributor.authorBatlle Gelabert, Xavier-
dc.date.accessioned2024-01-23T15:55:05Z-
dc.date.available2024-01-23T15:55:05Z-
dc.date.issued2023-04-24-
dc.identifier.issn1936-0851-
dc.identifier.urihttp://hdl.handle.net/2445/206183-
dc.description.abstractPlasmonic lattice nanostructures are of technological interest because of their capacity to manipulate light below the diffraction limit. Here, we present a detailed study of dark and bright modes in the visible and near-infrared energy regime of an inverted plasmonic honeycomb lattice by a combination of Au+ focused ion beam lithography with nanometric resolution, optical and electron spectroscopy, and finite-difference time-domain simulations. The lattice consists of slits carved in a gold thin film, exhibiting hotspots and a set of bright and dark modes. We proposed that some of the dark modes detected by electron energy-loss spectroscopy are caused by antiferroelectric arrangements of the slit polarizations with two times the size of the hexagonal unit cell. The plasmonic resonances take place within the 0.5−2 eV energy range, indicating that they could be suitable for a synergistic coupling with excitons in two-dimensional transition metal dichalcogenides materials or for designing nanoscale sensing platforms based on near-field enhancement over a metallic surface.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsnano.2c11016-
dc.relation.ispartofACS Nano, 2023, vol. 17, num.9, p. 8123-8132-
dc.relation.urihttps://doi.org/10.1021/acsnano.2c11016-
dc.rightscc-by (c) Rodriguez Alvarez, Javier et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)-
dc.subject.classificationEspectroscòpia de pèrdua d'energia d'electrons-
dc.subject.classificationPlasmons-
dc.subject.classificationNanoestructures-
dc.subject.otherElectron energy loss spectroscopy-
dc.subject.otherPlasmons (Physics)-
dc.subject.otherNanostructures-
dc.titleImaging of Antiferroelectric Dark Modes in an Inverted Plasmonic Lattice-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec739417-
dc.date.updated2024-01-23T15:55:05Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física de la Matèria Condensada)

Files in This Item:
File Description SizeFormat 
828779.pdf6.46 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons