Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/206679
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorClusella Corberó, Pau-
dc.contributor.advisorSánchez-Todo, Roser-
dc.contributor.advisorSoriano i Fradera, Jordi-
dc.contributor.authorMoreno Fina, Martina-
dc.date.accessioned2024-01-30T16:20:46Z-
dc.date.available2024-01-30T16:20:46Z-
dc.date.issued2023-06-
dc.identifier.urihttp://hdl.handle.net/2445/206679-
dc.descriptionTreballs Finals de Màster en Física dels Sistemes Complexos i Biofísica, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: Tutors: Pau Clusella Cober1ó Roser Sánchez-Todo, Jordi Soriano Fraderaca
dc.description.abstractGamma oscillations (30-80 Hz) play a crucial role in cognitive functions and are associated with neurological disorders, including Alzheimer’s disease. Non-invasive brain stimulation techniques, such as 40 Hz transcranial alternating current stimulation (tACS), offer potential in modulating these oscillations and impact cognitive functions. The complexity of the brain, however, necessitates the use of advanced models for effective understanding and the development of therapies. This study aims to validate a framework combining Neural Mass Models (NMMs) with volume conduction physics that takes into account the brain’s physical properties and the distribution of synapses across cortical layers. The validation involves predicting a synaptic distribution across various neuronal groups and employing a Genetic Algorithm (GA) to iteratively refine the model to match experimental data. Key findings include the ability of the NMM to achieve greater similarity with experimental results by varying stochastic noise and the dominance of gamma and alpha oscillations in experimental data aligning well with model predictions. The GA also shows robustness in fitting the model to experimental data, and the predicted synaptic distribution is evaluated against existing literature for physiological accuracy. Despite limitations, our enhanced NMM provides valuable insights into cortical layer interactions, contributing to the understanding of human brain function and the development of treatments for neurological disorders.ca
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Moreno, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Física dels Sistemes Complexos i Biofísica-
dc.subject.classificationEstimulació del cervell-
dc.subject.classificationAlgorismes genètics-
dc.subject.classificationOscil·lació neural-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherBrain stimulation-
dc.subject.otherGenetic algorithms-
dc.subject.otherNeural oscillation-
dc.subject.otherMaster's thesis-
dc.titleValidation and Refinement of a Laminar Neural Mass Model Using in vivo Mice Dataeng
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Física dels Sistemes Complexos i Biofísica

Files in This Item:
File Description SizeFormat 
TFM_Moreno_Fina_Martina.pdf2.76 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons