Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/206712
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorDíaz Guilera, Albert-
dc.contributor.advisorSoriano i Fradera, Jordi-
dc.contributor.authorPirker Díaz, Paula-
dc.date.accessioned2024-01-30T17:14:10Z-
dc.date.available2024-01-30T17:14:10Z-
dc.date.issued2023-05-
dc.identifier.urihttp://hdl.handle.net/2445/206712-
dc.descriptionTreballs Finals de Màster en Física dels Sistemes Complexos i Biofísica, Facultat de Física, Universitat de Barcelona. Curs: 2022-2023. Tutors: Albert Díaz-Guilera, Jordi Soriano Fraderaca
dc.description.abstractPersistent global synchronization of a neuronal network is considered a pathological, undesired state. Such as synchronization is often caused by the loss of neurons that regulate network dynamics, or cells that assist these neurons such as glial cells. Here we propose a self-regulation model in the framework of complex networks in which we assume that, for sake of simplicity, glial cells prevent the over synchronization of the neuronal network. We have considered a brain-like network characterized by a modular organization combined with a dynamic description of the nodes as Kuramoto oscillators. We have applied a self-regulation mechanism to keep local synchronization while avoiding global synchronization at the same time. To do so, we have added self-regulation to the system by switching off for a certain period of time a selection of edges that link nodes showing a synchronization above a certain threshold. Despite the simplicity of the approximation, our results show that it is possible to maintain a high local synchronization (module level) while keeping low the global one. In addition, characteristic dynamic patterns have been observed when analysing synchronization between modules in large modular networks. Our work could help to understand the effects of localized regulatory actions on modular systems with synchronous phenomena, such as neuroscience and other fields.ca
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pirker, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Física dels Sistemes Complexos i Biofísica-
dc.subject.classificationModel de Kuramoto-
dc.subject.classificationSincronització-
dc.subject.classificationXarxes neuronals-
dc.subject.classificationTreballs de fi de màster-
dc.subject.otherKuramoto model-
dc.subject.otherSynchronization-
dc.subject.otherNeural networks-
dc.subject.otherMaster's thesis-
dc.titleSelf-regulation of a network of Kuramoto oscillatorseng
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Física dels Sistemes Complexos i Biofísica

Files in This Item:
File Description SizeFormat 
TFM_Pirker_Diaz_Paula.pdf10 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons