Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/207506
Full metadata record
DC FieldValueLanguage
dc.contributor.authorIrigoien, Itziar-
dc.contributor.authorFerreiro, Susana-
dc.contributor.authorSierra, Basilio-
dc.contributor.authorArenas Solà, Concepción-
dc.date.accessioned2024-02-12T15:45:08Z-
dc.date.available2024-02-12T15:45:08Z-
dc.date.issued2023-11-
dc.identifier.issn1568-4946-
dc.identifier.urihttps://hdl.handle.net/2445/207506-
dc.description.abstractSupervised and unsupervised classification is crucial in many areas where different types of data sets are common, such as biology, medicine, or industry, among others. A key consideration is that some units are more typical of the group they belong to than others. For this reason, fuzzy classification approaches are necessary. In this paper, a fuzzy supervised classification method, which is based on the construction of prototypes, is proposed. The method obtains the prototypes from an objective function that includes label information and a distance-based depth function. It works with any distance and it can deal with data sets of a wide nature variety. It can further be applied to data sets where the use of Euclidean distance is not suitable and to high-dimensional data (data sets in which the number of features is larger than the number of observations , often written as 𝑝 >> 𝑛). In addition, the model can also cope with unsupervised classification, thus becoming an interesting alternative to other fuzzy clustering methods. With synthetic data sets along with high-dimensional real biomedical and industrial data sets, we demonstrate the good performance of the supervised and unsupervised fuzzy proposed procedures.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.asoc.2023.110917-
dc.relation.ispartofApplied Soft Computing, 2023, vol. 148, p. 1-12-
dc.relation.urihttps://doi.org/10.1016/j.asoc.2023.110917-
dc.rightscc-by (c) Irigoien, Itziar et al., 2023-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)-
dc.subject.classificationProcessament de dades-
dc.subject.classificationClassificació-
dc.subject.otherData processing-
dc.subject.otherClassification-
dc.titleFuzzy classification with distance-based depth prototypes: High-dimensional unsupervised and/or supervised problems-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec739904-
dc.date.updated2024-02-12T15:45:08Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Genètica, Microbiologia i Estadística)

Files in This Item:
File Description SizeFormat 
833526.pdf1.1 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons