Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/211142
Title: Development of microfluidic devices for cancer cell isolation
Author: Sierra Agudelo, Jessica Nathalia
Director/Tutor: Samitier i Marti, Josep
Keywords: Oncologia
Biòpsia
Diagnòstic de laboratori
Microfluídica
Oncology
Biopsy
Laboratory diagnosis
Microfluidics
Issue Date: 23-Feb-2024
Publisher: Universitat de Barcelona
Abstract: [eng] The emergence of liquid biopsies has been useful for the diagnosis of physiological conditions, inflammatory processes, and especially represents a good alternative tool for non-invasive analysis of tumor-derived materials. Currently, tissue biopsies are still the gold standard for tumor profiling. Nevertheless, this technique presents many limitations that include invasiveness, risk and depending on some anatomical locations is not easy (or even impossible) to obtain. Moreover, it provides a limited picture of the tumor profile, considering that tumors are heterogeneous entities composed of different subpopulations of cells, which display a variability of genetic and epigenetic changes. In this context, liquid biopsies are a cheaper, faster, non-invasive alternative to conventional biopsies, that can be used for personalized cancer therapy. In a broad sense, liquid biopsy is based on the isolation of biomarkers from the blood that can be used for cancer diagnosis and monitoring. This definition englobes Circulating Tumor Cells (CTCs), circulating tumor DNA (ctDNA) and nanovesicles. CTCs are cancer cells, which leave the primary tumor and enter the bloodstream initiating a process called metastasis. Nevertheless, one of the most relevant challenges in this field involves the processing and analysis of CTCs, due to their low amount in peripheral blood (1 to 100 CTCs per 109 blood cells) and high heterogeneity. Furthermore, the approaches for isolating CTCs from blood samples are limited due to high cell contamination rates or substantial loss of cancer cells, and high-cost methods. To overcome these limitations, microfluidic devices have been designed for isolating CTCs based on their intrinsic properties like density, size, deformability, and difference in membrane protein expression. This project was undertaken to develop microfluidic devices for isolating CTCs based on inertial focusing and affinity binding principle methods. We first developed a spiral microfluidic device that can efficiently separate the CTCs from most of the blood cells by their differences in size by applying a hydrodynamic sorting principle. The CTC output sample is contaminated by the largest leukocytes (~12 to 21 μm) which are in the same size range as the CTCs (~9 μm to 30 μm). The research has also explored the development of microfluidic spiral devices using a 3D printer, in which the geometry dimensions were adapted to remove Leukocytes binding to polystyrene particles functionalized with CD45 antibody, allowing a more CTCs sample purity. Alternatively, second type of microfluidic device known as a Herringbone chip was designed to capture the remaining leukocytes (negative enrichment of CTCs) from the spiral CTC output sample. This device uses an affinity-binding principle based on a mixed Self Assembled Monolayer (SAM) composed of a Silane-PEG-Biotin, Silane-PEG-OH and CD45- antibody (common antigen for leukocytes).Moreover, the microfluidic platform was optimized for highthroughput blood sample processing including a lysis pre-treatment, guaranteeing a high recovery of CTC and its viability for further analysis. On the other hand, an electronic circuit was successfully developed using piezoelectric micropumps MP6 controlled by Raspberry PI zero, which allowed to overcome some limitations of traditional syringe pumps, as well as facilitate the use of this platform in a clinical environment. Finally, the clinical proof of concept was initiated with samples from colon cancer patients in collaboration with the Vall d'Hebron hospital.
[spa] Las biopsias líquidas representan una buena herramienta alternativa para el análisis no invasivo de materiales derivados de tumores. Esta definición engloba las células tumorales circulantes (CTC), el ADN tumoral circulante (ctDNA) y las nanovesículas. Las CTC son células cancerosas que abandonan el tumor primario e ingresan al torrente sanguíneo iniciando un proceso llamado metástasis. Sin embargo, uno de los desafíos más relevantes implica el procesamiento y análisis de las CTC, debido a su baja cantidad en sangre periférica (1 a 100 CTC por 109 células sanguíneas) y su alta heterogeneidad. Además, los enfoques para aislar CTC de muestras de sangre son limitados debido a las altas tasas de contaminación celular, la pérdida sustancial de células cancerosas y los elevados costos. Para superar estas limitaciones, se han diseñado dispositivos microfluídicos para aislar CTC en función de sus propiedades intrínsecas como densidad, tamaño, deformabilidad y diferencia en la expresión de proteínas de membrana. Durante esta tesis se desarrollaron dispositivos microfluídicos para aislar CTC basados en métodos de principio de unión por afinidad y enfoque inercial. Primero, desarrollamos un dispositivo microfluídicos en espiral que puede separar eficientemente las CTC de la mayoría de las células sanguíneas por sus diferencias de tamaño mediante la aplicación de un principio de clasificación hidrodinámica. La muestra de salida de CTC está contaminada por los leucocitos más grandes (~12 a 21 µm) que están en el mismo rango de tamaño que las CTC (~9 µm a 30 µm). La investigación también ha explorado el desarrollo de dispositivos en espiral utilizando una impresora 3D, en los que las dimensiones geométricas se adaptaron para eliminar la unión de leucocitos a partículas de poliestireno fucionalizadas con anticuerpo CD45, permitiendo una mayor pureza de la muestra de CTC. Alternativamente, se diseñó un segundo tipo de dispositivo conocido como chip en espiga para capturar los leucocitos restantes (enriquecimiento negativo de CTC) de la muestra de salida de CTC en espiral. Este dispositivo utiliza un principio de unión por afinidad basado en una monocapa autoensamblada (SAM) mixta compuesta de silano-PEG-biotina, silano-PEG-OH y anticuerpo CD45 (antígeno leucocitario común). Por otro lado, se desarrolló con éxito un circuito electrónico utilizando microbombas piezoeléctricas MP6 controladas por Raspberry PI zero, lo que permitió superar algunas limitaciones de las bombas de jeringa tradicionales, así como facilitar el uso de esta plataforma en un entorno clínico. Finalmente, se inició la prueba clínica de concepto con muestras de pacientes con cáncer de colon en colaboración con el hospital Vall d'Hebron.
URI: http://hdl.handle.net/2445/211142
Appears in Collections:Tesis Doctorals - Facultat - Física

Files in This Item:
File Description SizeFormat 
JNSA_PhD_THESIS.pdf3.82 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons