Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/211341
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorGarcía López, Ricardo, 1962--
dc.contributor.authorGuzmán Varela, Johan Sebastián-
dc.date.accessioned2024-05-16T09:20:29Z-
dc.date.available2024-05-16T09:20:29Z-
dc.date.issued2024-01-17-
dc.identifier.urihttps://hdl.handle.net/2445/211341-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Ricardo García Lópezca
dc.description.abstract[en] The Gauss-Bonnet Theorem was first published by Gauss in 1827 for the case of a geodesic triangle on a surface. Since then, the theorem has progressively increased in generality. The purpose of this work is to prove it for the case of 2-dimensional Riemannian manifolds, while discussing the historic development of its other versions. For that, the necessary concepts of differential geometry are introduced, such as smooth manifolds, their tangent spaces, and the measurement of areas and angles via Riemannian metrics. The concepts of curves, lifts, orientability, and curvature are also adapted to the nature of manifolds. With that toolbox, the Rotation Index Theorem is proved, subsequently the Gauss-Bonnet Formula, and finally the Gauss-Bonnet theorem for orientable and non-orientable manifolds. The latter employs combinatorial arguments, combining local results to yield a global one. The most remarkable aspect of this theorem is precisely that it connects local properties of differential geometry, specifically the integral of the curvature, with a global topological invariant, the Euler characteristic.ca
dc.format.extent49 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Johan Sebastián Guzmán Varela, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationGeometria diferencialca
dc.subject.classificationInvariants-
dc.subject.classificationGeometria de Riemannca
dc.subject.classificationVarietats de Riemannca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherDifferential geometryen
dc.subject.otherInvariants-
dc.subject.otherRiemannian geometryen
dc.subject.otherRiemannian manifoldsen
dc.subject.otherBachelor's thesesen
dc.titleThe Gauss-Bonnet theoremca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_guzmán_varela_johan_sebastian.pdfMemòria766.11 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons