Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/211465
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRos, Xavier-
dc.contributor.authorJan Bruno, Lewenstein Sanpera-
dc.date.accessioned2024-05-17T08:35:58Z-
dc.date.available2024-05-17T08:35:58Z-
dc.date.issued2024-01-17-
dc.identifier.urihttps://hdl.handle.net/2445/211465-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2024, Director: Xavier Rosca
dc.description.abstract[en] Regularity theory for Partial Differential Equations might be one of the most important topics in the field. With many applications, some of them in areas further away like Mathematical Physics, learning the basic regularity estimates for the Laplacian seems a crucial step into understanding more general results and solutions. This project intends to provide the tools and proofs of the CalderónZygmund estimates for the Laplacian equation $\Delta u=f$, with $f \in L^p$. We will separate in three distinct cases: $p=2, p \in(2, \infty)$ and $p=\infty$, each with a different proof. Further, using blow-up techniques introduced in [1] a new proof for the limiting case $p=\infty$ will be provided. Finally, we intend to remark a few points that could potentially lead towards a blow-up proof for the general $L^p$ case.ca
dc.format.extent43 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Jan Bruno Lewenstein Sanpera, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationEquacions en derivades parcialsca
dc.subject.classificationEquacions diferencials el·líptiques-
dc.subject.classificationEspais funcionalsca
dc.subject.classificationTreballs de fi de grauca
dc.subject.otherPartial differential equationsen
dc.subject.otherElliptic differential equations-
dc.subject.otherFunction spacesen
dc.subject.otherBachelor's thesesen
dc.titleCalderón-Zygmund estimates for the Laplacianca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_lewenstein_sanpera_jan.pdfMemòria478.43 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons