Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/213151
Title: Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states
Author: Keeble, James
Drissi, Mehdi
Rojo-Francàs, Abel
Juliá-Díaz, Bruno
Ríos Huguet, Arnau
Keywords: Matèria condensada
Aprenentatge automàtic
Condensed matter
Machine learning
Issue Date: 20-Nov-2023
Publisher: American Physical Society
Abstract: We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a Gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an Ansatz for the wave function and use machine learning techniques to variationally minimize the energy of systems from two to six particles. We provide extensive benchmarks for this toy model with other many-body methods, including exact diagonalization and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the nonperturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.
Note: Reproducció del document publicat a: https://doi.org/10.1103/PhysRevA.108.063320
It is part of: Physical Review C, 2023, num.108, p. 1-25
URI: http://hdl.handle.net/2445/213151
Related resource: https://doi.org/10.1103/PhysRevA.108.063320
ISSN: 2469-9985
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
843948.pdf13.1 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.