Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/214854
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSala Huerta, Alba-
dc.contributor.authorLabrador Isern, Mireia-
dc.contributor.authorBuitrago, Diana-
dc.contributor.authorJorge, Pau de-
dc.contributor.authorBattistini, Federica-
dc.contributor.authorHeath, Isabelle Brun-
dc.contributor.authorOrozco López, Modesto-
dc.date.accessioned2024-08-29T09:06:24Z-
dc.date.available2024-08-29T09:06:24Z-
dc.date.issued2024-08-20-
dc.identifier.issn1362-4962-
dc.identifier.urihttps://hdl.handle.net/2445/214854-
dc.description.abstractWe demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods. Graphical Abstract-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherOxford Academic-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/nar/gkae689-
dc.relation.ispartofNucleic Acids Research, 2024-
dc.relation.urihttps://doi.org/10.1093/nar/gkae689-
dc.rightscc by-nc-nd (c) Sala Huerta, Alba et al, 2024-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationBiologia molecular-
dc.subject.otherMachine learning-
dc.subject.otherMolecular biology-
dc.titleAn integrated machine-learning model to predict nucleosome architecture-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2024-08-28T13:42:46Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6676347-
dc.identifier.pmid39162225-
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
NAR_Sala et al_2024.pdf2.63 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons