Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/215063
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorMarinelli, Dimitri-
dc.contributor.advisorDíaz Guilera, Albert-
dc.contributor.authorChester, Madison Elizabeth-
dc.date.accessioned2024-09-09T09:12:23Z-
dc.date.available2024-09-09T09:12:23Z-
dc.date.issued2024-06-30-
dc.identifier.urihttps://hdl.handle.net/2445/215063-
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Dimitri Marinelli i Albert Díaz Guileraca
dc.description.abstract[en] This thesis explores graph-based entity resolution and completion within academic knowledge graphs, focusing on the complex relationships between authors and papers and between papers themselves using Graph Neural Networks (GNNs). Raw data sourced from the American Physical Society underwent meticulous data cleaning and entity resolution analysis to prepare it for the proposed network. Author grouping strategies and citation overlap were examined, revealing distinct clusters of researchers and insightful patterns in citation relationships. A GNN model was developed using SAGEConv layers and heterogeneous transformations to capture local graph structures for accurate link prediction. This model was optimized with mini-batch loading and edge-level splits, which contributed to its high accuracy in predicting links between authors and papers, as demonstrated in the evaluation. The findings underscore the model’s capability to uncover hidden relationships and trends within the academic graph. Future work could enhance the model by incorporating additional features, experimenting with alternative GNN architectures, and including more detailed citation contexts and collaboration networks. Overall, this thesis highlights the transformative potential of GNNs in entity resolution and completion for academic knowledge graphs.ca
dc.format.extent50 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Madison Elizabeth Chester, 2023-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades-
dc.subject.classificationTeoria de grafs-
dc.subject.classificationXarxes neuronals (Informàtica)-
dc.subject.classificationInvestigadors-
dc.subject.classificationTreballs de fi de màster-
dc.subject.classificationLiteratura científicaca
dc.subject.otherGraph theory-
dc.subject.otherNeural networks (Computer science)-
dc.subject.otherResearch workers-
dc.subject.otherMaster's thesis-
dc.subject.otherScientific literatureen
dc.titleGraph-based entity resolution and completion for academic knowledge graphsca
dc.typeinfo:eu-repo/semantics/masterThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Màster Oficial - Fonaments de la Ciència de Dades

Files in This Item:
File Description SizeFormat 
tfm_chester_madison.pdfMemòria732.37 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons