Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/215175
Title: Computational modelling of 2D carbon-based materials with tunable electronic properties
Author: Lleopart Motis, Genís
Director/Tutor: Bromley, Stefan Thomas
Moreira, Ibério de Pinho Ribeiro
Keywords: Grafè
Compostos orgànics
Química quàntica
Estructura electrònica
Graphene
Organic compounds
Quantum chemistry
Electronic structure
Issue Date: 6-Sep-2024
Publisher: Universitat de Barcelona
Abstract: [eng] Organic semiconductors are versatile functional materials that are increasingly used in commercial electronic devices. However, their use in high performance applications is limited due to their low charge/spin carrier mobilities. The discovery of graphene in 2004 represented one of the biggest revolutions to implement carbon-based electronic devices. Its unique electronic properties, such as being a gapless Dirac semimetal with ultrahigh charge mobilities, attracted immediately the attention of the scientific community and promised a new world of possibilities in organic electronics. Nevertheless, the absence of a semiconducting gap implies that currents cannot be easily modulated in graphene, as required in electronic devices (e.g. on/off switching in transistors). Efforts to implement top-down fabrication procedures to induce a gap in graphene have been largely unsuccessful. With this motivation, and inspired by the initial promises of graphene, new theoretically predicted 2D carbon-based materials have been proposed as potentially viable materials with tuneable electronic properties by means of different mechanisms such as mechanical deformations (e.g., tension and compression) or chemical modifications (e.g., atom vacancies, Si substitution). The aim of the present doctoral thesis is the study of 2D carbon-based materials with tuneable electronic properties through a satisfactory computational modelling approach using suitable hybrid DFT based methods. With this prescription, we studied graphene and graphynes as model systems to understand the electronic structure and properties of this type of 2D carbon-based materials that provided precursor skeletons that have been used to propose new materials described in this thesis. As a first result, we established graphynes as materials that exhibit electronic ground states that can be modulated by mechanical strain. As an extension of these studies on strained graphynes, we have also analysed distorted buckled solutions by in-plane compression of graphynes as a mechanism for tuning the electronic ground state of graphynes. Another line of research explored possible 2D carbon- based materials with increased chemical stability by inducing defects or atom substitutions/inclusions, showing electronic ground-state solutions easily tuneable by mechanical deformations. The last two projects are dedicated to 2D, 1D and cluster systems based on silicon carbide. We initially showed how Si-doped graphene systems present a wide range of electronic solutions. This study was extended to Si-substituted graphynes, resulting in the so-called sili-graphynes. Finally, we studied stoichiometric SiC nanoclusters, nanotubes, and 2D systems to rationalize the energy stabilization of small to medium size SiC nanoparticles with configurations showing variable degree of Si/C segregation.
[cat] El descobriment del grafè l’any 2004 va representar una de les revolucions més importants en l’àmbit dels dispositius electrònics basats en el carboni. Les seves propietats electròniques úniques van atraure immediatament l’atenció de la comunitat científica i van obrir les portes a un nou món de prometedores possibilitats en l’electrònica orgànica. No obstant així, l’absència d’un gap semiconductor fa que els corrents en el grafè no es puguin modular fàcilment, tal com requereix el disseny de dispositius electrònics (interruptors on/off). Els esforços per implementar una síntesis top- down en el grafè que permeti induir un gap aïllant han estat gairebé tots envà. Amb aquesta motivació, s’han proposat a nivell teòric tot un conjunt de materials 2D basats en el carboni com a materials amb solucions electròniques potencialment modificables mitjançant diferents mecanismes, com poden ser certes deformacions mecàniques (e.g., tensió i compressió) o modificacions químiques (e.g., hidrogenació, vacants atòmiques, substitució d’àtoms de carboni per àtoms de silici). En aquesta tesi s’ha emprat el grafè i els grafins com a sistemes model per entendre l’estructura electrònica i propietats d’aquesta classe de materials, com a precursores que s’han emprat per proposar nous materials. Primerament, hem establert els grafins com materials que mostren estats electrònics modulables mitjançant tensió isotròpica, així com mitjançant estructures corrugades induïdes per compressió en el pla. Una altra línia de recerca ha explorat nous materials 2D basats en el carboni que tinguessin una estabilitat química superior als grafins mitjançant la introducció de defectes o substitució/inserció d’altres àtoms, els quals també presenten solucions electròniques modificables mitjançant deformacions mecàniques Els últims dos projectes que conformen aquesta tesi han estat dedicats als sistemes 2D , 1D i clústers basats en el carbur de silici. Primerament, s’han estudiat el grafè dopat amb Si. Aquest estudi s’ha estès per incloure els grafins, resultant en els anomenats sili-grafins. Finalment, s’han estudiat nanoclústers, nanotubs i sistemes 2D de SiC estequiomètrics per tal de racionalitzar l’estabilitat de nanopartícules de SiC de diferents mides que presenten estructures amb un grau de segregació de Si i C variable.
URI: http://hdl.handle.net/2445/215175
Appears in Collections:Tesis Doctorals - Facultat - Química

Files in This Item:
File Description SizeFormat 
GLM_PhD_THESIS.pdf12.25 MBAdobe PDFView/Open    Request a copy


Embargat   Document embargat fins el 6-9-2026


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.